Open Access Open Access  Restricted Access Subscription Access

Discovering the Open Access Movement on Twitter: An Exploratory Study

Muhammad T Sadiq, Akhilesh K S Yadav

Abstract


Open Access possesses unconfined reuse and freeaccess of electronic resources. This research focuses on scholarly discussions on ‘Open Access’ in the most common microblogging platform Twitter. The main objectives of the study are to identify the locations, trends and applications used by scholars for frequent tweets; to apply text mining techniques to analyse unstructured text content on the Open Access; to find out the pattern, context with Open Access. Data collection process involved gathering tweets of one month using specific keyword ‘Open Access’. Duringtheresearchperiod, the highestnumberoftweetsonOpenAccesswason17thJanuary 2018and the least number of tweets was on 6thFebruary 2018. The tweets posted on these days were on variety of topics, and most of the tweets were tweeted from United States. #OpenResearch, #OpenScience,#OpenScholarshipand#OpenPR,#OpenDataetc.werethemostpopulartweet hashtags used during the research.


Full Text:

PDF

References


Ajao, O., Hong, J., & Liu, W. (2015). A survey of location inference techniques on Twitter. Journal of Information Science, 41(6), 855-864. https://doi.org/10.1177%2F0165551515602847

Anger, I., & Kittl, C. (2011, September). Measuring influence on Twitter. In Proceedings of the 11th International Conference on Knowledge Management and Knowledge Technologies (p. 31). ACM. http://www.l2f.inesc-id.pt/~fmmb/wiki/uploads/Work/misnis.ref07.pdf

Bild, D. R., Liu, Y., Dick, R. P., Mao, Z. M., & Wallach, D. S. (2015). Aggregate characterization of user behavior in Twitter and analysis of the retweet graph. ACM Transactions on Internet Technology, 15(1), no. 4. https://doi.org/10.1145/2700060

Borruto, G. (2015). Analysis of tweets in Twitter. Webology, 12(1). http://www.webology.org/2015/v12n1/a131.pdf

Boyd, D., Golder, S., & Lotan, G. (2010, January). Tweet, tweet, retweet: Conversational aspects of retweeting on twitter. In 2010 43rd Hawaii International Conference on System Sciences (pp. 1-10). IEEE. https://doi.org/10.1109/HICSS.2010.412

Farzindar, A., & Inkpen, D. (2015). Natural language processing for social media. Synthesis Lectures on Human Language Technologies, 8(2), 1-166. https://doi.org/10.2200/S00659ED1V01Y201508HLT030

Gorunescu, F. (2011). Data Mining: Concepts, models and techniques (Vol. 12). Berlin: Springer Science & Business Media. https://doi.org/10.1007/978-3-642-19721-5

Han, J., Kamber, M., & Pei, J. (2012). Data Mining: Concepts and Techniques. San Francisco: Morgan Kaufmann. https://doi.org/10.1016/B978-0-12-381479- 1.00001-0

Huq, M. R., Ali, A., & Rahman, A. (2017). Sentiment analysis on Twitter data using KNN and SVM. International Journal of Advanced Computer Science and Applications, 8(6), 19-25. https://pdfs.semanticscholar.org/05a8/78000170abcd0c6f8208080470858422e17c.pdf

Luo, Z., Osborne, M., & Wang, T. (2012, May). Opinion retrieval in twitter. In Sixth International AAAI Conference on Weblogs and Social Media. https://www.aaai.org/ocs/index.php/ICWSM/ICWSM12/paper/viewPaper/4592

Mukherjee, S., & Bhattacharyya, P. (2013). Sentiment analysis: A literature survey. arXiv preprint arXiv:1304.4520. https://arxiv.org/pdf/1304.4520

Palguna, D. S., Joshi, V., Chakaravarthy, V., Kothari, R., & Subramaniam, L. V. (2015). Analysis of sampling algorithms for twitter. In Twenty-Fourth International Joint Conference on Artificial Intelligence. https://www.aaai.org/ocs/index.php/IJCAI/IJCAI15/paper/viewPaper/10690

Park, S. B., Jang, J., & Ok, C. M. (2016). Analyzing Twitter to explore perceptions of Asian restaurants. Journal of Hospitality and Tourism Technology, 7(4), 405–422. https://doi.org/10.1108/JHTT-08-2016-0042

Prasad, M. R., Manjula, B., & Banu, A. (2012). Comparison of Data Mining and Web Mining. IFRSA International Journal of Data Warehousing & Mining, 2(1), 34–39. http://www.academia.edu/download/35561132/7_seven.pdf

Pons-Porrata, A., Berlanga-Llavori, R., & Ruiz-Shulcloper, J. (2007). Topic discovery based on text mining techniques. Information Processing & Management, 43(3), 752-768. https://doi.org/10.1016/j.ipm.2006.06.001

Saini, G. (2014). A Survey report for Data Mining based on web research. International Journal of Advance Research Ideas and Innovations in Technology, (2), 1-7. Retrieved February 18, 2019, from https://pdfs.semanticscholar.org/8547/02e4684efebcc8745d3f1442bfea7b5d09bf.pdf

Sarawagi, S. (2008). Information extraction. Foundations and Trends in Databases, 1(3), 261-377. http://www.nowpublishers.com/article/DownloadSummary/DBS-003

Scalfani, V. F. (2017). Text analysis of chemistry thesis and dissertation titles. Issues in Science and Technology Librarianship, 86. http://istl.org/17-spring/refereed3.html

Schonfeld, E. (February 20, 2009). The Top 21 Twitter Clients (According to TwitStat). Retrieved March 3, 2019, from https://techcrunch.com/2009/02/19/the-top-21-twitter-clients-according-to-twitstat/

Soboleva, A., Burton, S., Mallik, G., & Khan, A. (2017). ‘Retweet for a Chance to…’: an analysis of what triggers consumers to engage in seeded eWOM on Twitter. Journal of Marketing Management, 33(13-14), 1120-1148. https://doi.org/10.1080/0267257X.2017.1369142

Suber, P. (2012). Open Access. London: MIT Press. Retrieved on February 22, 2019, from https://mitpress.mit.edu/sites/default/files/9780262517638_Open_Access_PDF_Versi on.pdf

Talib, R., Hanif, M. K., Ayesha, S., & Fatima, F. (2016). Text mining: techniques, applications and issues. International Journal of Advanced Computer Science and Applications, 7(11), 414-418. https://pdfs.semanticscholar.org/f3ed/ac7ee49a6a6d8eb3deb073589aeaf36ab45d.pdf

Tseng, Y.H., Lin, C.J., & Lin, Y.I. (2007). Text mining techniques for patent analysis. Information Processing & Management, 43(5), 1216–1247. https://doi.org/10.1016/J.IPM.2006.11.011

Uren, V., & Dadzie, A. S. (2015). Public science communication on Twitter: a visual analytic approach. Aslib Journal of Information Management, 67(3), 337-355. https://doi.org/10.1108/AJIM-10-2014-0137

Yan, B.N., Lee, T.S., & Lee, T.P. (2015). Analysis of research papers on E- commerce (2000–2013): based on a text mining approach. Scientometrics, 105(1), 403–417. https://doi.org/10.1007/s11192-015-1675-6

Zarrella, D. (2009). The Science of ReTweets. Retrieved March 3, 2019, from http://danzarrella.com/science-of-retweets.pdf


Refbacks

  • There are currently no refbacks.




Disclaimer 2016-2019 © Indian Library Association (ILA), All Rights Reserved.

Designed and Developed by Dr. Mohammad Nazim under the direction of Prof. Shabahat Husain.